Reaction of Fullerenes and **Benzyne**

Steven H. Hoke 11, Jay Molstad, Dominique Dilettato, Mary Jennifer Jay, Dean Carlson, Bart **Kahr,*** and R. Graham Cooks*

Department of Chemistry, Purdue University, West Lafayette, Indiana **47907-1393**

Received May *29, 1992*

Summary: Benzyne reacts with C_{60} to form a series of compounds $[C_{60} + (C_6H_4)_n]$, $n = 1,2,3,4$, identified by mass spectrometry; the monoaddition product was isolated by chromatography and structurally characterized by 'H- and 13C-NMR spectroscopies.

Electron-deficient pyracyclene bonds are the sites of attachment in the preponderance of fullerene addition reactions. Metal reagents add here,' **as** do a variety of dienes and dipolar compounds,² carbenes, 3 and oxygen atoms.4 However, o-benzyne typically reacts with polycyclic aromatic compounds by adding across the l,4-positions within a ring, not between rings, thus participating in $[2 + 4]$ cycloaddition reactions.⁵ The common 1,2-mode of attachment to C_{60} might not be the exclusive regiochemistry followed in a reaction of benzyne with buckminsterfullerene. Here, we describe the preparation of benzyne adducts of C_{60} and C_{70} , as well as the isolation of the monoaddition product $(m/z 796)$ to C_{60} and its spectroscopic characterization.

Fullerenes were prepared and purified using standard procedures described previously.6 **A** benzene solution containing C_{60} and isoamylnitrite was stirred vigorously. Benzyne, 10 equiv, was generated in situ by adding anthranilic acid at room temperature. $⁷$ </sup>

Mass spectrometric analysis⁸ of the reaction mixture showed that $\sim 72\%$ of the C₆₀ had been consumed, of which \sim 45% was converted to monobenzyne product (m/z) 796), \sim 38% to dibenzyne product $(m/z 872)$, \sim 12% to tribenzyne product (m/z) 948), and \sim 2% to tetrabenzyne

Press: New York, **1967;** pp **200-239.**

Figure 1. Electron attachment mass spectrum⁸ of the benzyne adducts of C₈₀: m/z 720 = C₆₀, m/z 796 = C₆₀ + C₆H₄, m/z 872 = C₆₀ + (C₆H₄)₂, m/z 948 = C₆₀ + (C₆H₄)₃, m/z 1024 = C₆₀ + $(C_6H_4)_4.$

Figure 2. High-performance liquid chromatogram¹³ showing the peaks corresponding to the dibenzyne adducts (I), monobenzyne adduct (II), and C₆₀ (III).

product $(m/z 1024)$ (Figure 1).⁹ Fragmentation of the benzyne adducts by tandem mass spectrometry¹⁰ occurs by successive losses of benzyne, ultimately restoring C_{60} . The major peaks in the spectrum are associated with

0022-326319211957-5069\$03.00/0 *0* **1992** American Chemical Society

⁽¹⁾ Hawkins, J. M.; Lewis, T. A.; Loren, S. D.; Meyer, A.; Heath, J. R.; Shibato, Y.; Saykally, R. J. J. *Org.* Chem. **1990,55,6250.** Hawkins, J. M.; Meyer, A.; Lewis, T. A.; Loren, S.; Hollander, F. J. Science **1991,252,312.** Fagan, P. J.; Calabrese, J. C.; Malone, B. Science 1991, 252, 1160. Balch, A. L.; Catalano, V. J.; Lee, J. W. *Inorg. Chem.* 1991, 30, 3980. Balch, A. L.; Catalano, V. J.; Lee, J. W.; Olmstead, M. M.; Parkin, S. R. J. Am. Am. Chem. SOC. **1991,113,9408.** Koefod, R. S.; Hudgens, M. F.; Shapley, J. R. J. Am. *Chem. SOC.* **1991,113,8957.** *See* **also:** Fagan, P. J.; Calabrese, J. C.; Malone, B. Acc. Chem. Res. **1992,** 25, **134.** Hawkins, J. M. Acc. Chem. Res. **1992,25, 150.**

⁽²⁾ Wudl, F. In Fullerenes; Hammond, G. S., Kuck, V. J., Eds.; American Chemical Society: Washington, **1992.** See also: Wudl, F. Acc. Chem. Res. **1992,25, 134** and references cited therein.

⁽³⁾ Suzuki, T.; Li, Q.; Khemani, K. C.; Wudl, F.; Almarsson, O. Science **1991,254,1186.**

⁽⁴⁾ Wood, J. M.; Kahr, B.; Hoke, S. H., II; Dejarme, L.; Cooks, R. G.; Ben-Amotz, D. *J. Am. Chem. Soc.* 1991, *113*, 5907. Creegan, K. M.; Robbins, J. L.; Robbins, W. K.; Millar, J. M.; Sherwood, R. D.; Tindall, P. J.; Cox, D. M.; Smith, A. B., III; McCauley, J. P., Jr.; Jones, D. R.; Gallagher, R. T. J. Am. Chem. Soc. 1992, 114, 1103. Elemes, Y.; Silverman, S. K.; Sheu, C.; Kao, M.; Voote, C. S.; Alvarez, M. M.; Whetten, R. L. An

⁽⁶⁾ Haufler, R. E.; Conceicao, J.; Chibante, L. P. F.; Chai, Y.; Byrne, N. E.; Flanagan, S.; Haley, M. M.; O'Brien, S. C.; Pan, C.; Xiao, Z.; Billups, W. E.; Ciufolini, M. A.; Hauge, R. H.; Margrave, J. L.; Wilson, L. J.;

⁽¹⁰ mg, **0.014** mol) was dissolved in **40** mL of methylene chloride in a **100-mL** round-bottom flask fitted with a drying tube. Isoamyl nitrite **(20** mL, 0.014 mol) was added via syringe. Anthranilic acid (20 mg, 0.015 mol) was added as a solid, and the reaction mixture was stirred for 3 h at room temperature, after which the mixture had assumed a deep brown color. The solution waa then concentrated by evaporation.

⁽⁸⁾ Mass spectra were recorded using a Finnigan TSQ Model **700.** Samples were introduced by desorption from a probe which was ramped
from ambient temperature to 800 °C in 20 s. Electron attachment was
performed using NH₃ as a reagent gas to moderate electron energies and to allow nondissociative electron attachment. See: von Ardenne, M.; Steinfelder, K.; Tummler, R. *Elektronenanlagerungs-massenspektro*metric Organischer Substanren; Springer-Verlag: Berlin, **1971.** Hunt, D. F.; Sethi, **S.** K. *J.* Am. Chem. SOC. **1980,102,6953.** Dillard, J. G. Chem. Rev. **1973, 73, 589.**

⁽⁹⁾ Yields were estimated by integrating the respective mass chromatograms over the full desorption profile and assuming equal ionization and transmission efficiencies.

Figure 3. 500-MHz ¹H-NMR spectrum¹⁴ of the monobenzyne adduct of C_{60} in CD_2Cl_2 . The inset shows the simulated line shape to scale but offset. Also inset is the calculated structure, based on the AM1 Hamiltonian,¹⁷ for the product resulting from addition across the pyracyclene bonds.

Figure 4. The ¹³C-NMR spectrum of the monobenzyne adduct of C_{60} in 3:1 CS_2/a etcone- d_6 with 0.03 M Cr(acac)₃ as a relaxation agent.18 ppm (number of carbons): **6 155.34 (4), 149.48 (2), 147.13 (2), 146.80 (4), 146.43 (4), 146.38 (4), 145.76 (4), 145.72 (4), 145.66 (2), 144.91 (4), 143.30 (6), 143.21 (4), 142.70 (4), 142.5 (4), 140.85 (4), 139.31 (4), 130.76 (2), 124.22 (2), 78.75 (2).**

satellites that are **16** Da higher, presumably resulting from the pernicious epoxidation of fullerenes observed previously under a variety of conditions.¹¹ C_{70} also reacts with benzyne to give a monoaddition product *(m/z* 916).

Previously, we showed that aromatic hydrocarbons **un**dergo electrophilic substitution with C_{60} and $\mathrm{C}_{70}.^{12}$ The resulting mixtures of fullerenated aromatics were difficult to purify because **(1)** multiple additions (up to **20)** *occurred* and were difficult to control under the Friedel-Crafts conditions described, **(2)** the aryl adducts were accompagenation, and (3) the pendant groups were unstable to some analytical conditions. The benzyne adducts of C_{60} suffered from none of these deficiencies.

Milligram quantities of the mixtures resulting from the reaction of benzyne and C_{60} were chromatographed on a ${\rm semiperparative} ~ {\rm C}_{18} ~{\rm column}. ^{13} ~~~ {\rm Figure~ 2} ~{\rm shows ~ the~ chromal}$ matogram with peaks corresponding to the separated diand monobenzyne adducts of C_{60} , as well as C_{60} . The identities of the respective fractions were confirmed by negative ion desorption chemical ionization mass spectrometry.

The major feature in the ¹H-NMR spectrum¹⁴ of the fraction corresponding to monoaddition of benzyne was an **AA'BB'** multiplet in the aromatic region characteristic of a mirror symmetric product. Transitions were **observed** in CD₂Cl₂ at *δ* 8.038, 8.034, 8.026, 8.020, 8.015, 8.014, 8.009,

⁽¹⁰⁾ Collision-induced dissociation waa performed in the negative-ion mode with a Q2 DC offset of 150 V and a xenon target at 0.6 mTorr (uncorrected): Busch, K. L.; Glish, G. L.; McLuckey, **5.** A. Mass Spec-trometry/Mass Spectrometry; VCH: New York, 1988. (11) **See** ref 4 **aa** well **aa:** Kalsbeck, W. A.; Thorp, H. H. J. Electroanul.

Chem. 1991, 314, 363.

⁽¹²⁾ Hoke, **S.** H., **II;** Molstad, J.; Payne, G. L.; Kahr, B.; Ben-Amotz, D.; Cooks, R. G. Rapid *Commun.* Mass. Spectrom. 1991,5,472. Similar reeulta were obtained by: Olah, G. A.; Bucsi, **1.;** Lambert, C.; Aniszfeld, R.; Trivedi, N. J.; **Sensharma,** D. K.; Prakaah, G. K. S. J. *Am.* Chem. SOC. 1991, 113, 9385, 9387. Taylor, R.; Langley, G. J.; Meidine, M. F.; Parsons, J. P.; Abdul-Sada, **A.** K.; Dennis, T. J.; Hare, J. P.; Kroto, H. W.; Walton, D. R. M. J. **Chem.** *SOC.,* Chem. *Commun.* 1992,667.

⁽¹³⁾ A Vydac 201TP, $5-\mu$ m, C₁₈, 250- \times 10-mm i.d. column protected by a C₁₈ guard column was used in the HPLC separations. Isocratic elution waa achieved on a Perkin-Elmer **Seriea** 400 **liquid** chromatograph at a flow rate of 2 mL/min with a **60:40** mixture of Fisher HPLC-grade concentration of the reaction mixture and filtration with a nylon 66, 0.45- μ m membrane filter, the brown reaction solution was injected using a Rheodyne Model 7120 injector with a 50- μ L injection loop. Elution was monitored by ultraviolet absorption at 254 nm with a Altex mercury vapor detector.

 (14) 'H-NMR and ¹³C-NMR spectra were obtained on Varian VXR 500 and VXR 600 NMR spectrometers, respectively. The FTIR spectrum **⁵⁰⁰**and **VXR** *600 NMR* spectrometers, respectively. The *FTJR* **spectrum** waa recorded with a Perkin-Elmer **1800** spectrometer and the UV/vis spectrum with **a** Hewlett-Packard 8451A diode array spectrometer.

8.002,7.998,7.801, 7.797, 7.789,7.784, 7.783, 7.778,7.772, 7.764, and 7.761. This spectrum was simulated with the following chemical shifts and coupling constants: $v_a = \delta$ Hz , and $J_{AA'} = 0.8$ Hz (Figure 3). The ¹H-NMR spectrum of the collected diadduct fractions was complex (more than 100 transitions from δ 7.5-8.2) resulting from the many regiochemical possibilities for adding a second benzyne molecule to $[C_{60} + C_6H_4]$. **8.018,** $\nu_{\rm b} = \delta$ 7.780, $J_{\rm AB} = 7.6$ Hz, $J_{\rm AB'} = 1.2$ Hz, $J_{\rm BB'} = 6.7$

The ${}^{13}C[{}^{1}\dot{H}]$ -NMR spectrum (Figure 4) showed 19 transitions. A tabulation of the **peaks** is given in the figure caption. The C_{2v} structure, corresponding to benzyne addition across the pyracyclene bonds, should give rise to **20 peaks** in the **spectrum;** seven independent carbon atoms sit on mirror planes and 13 have unit occupancy. Correspondence between the proposed structure and the NMR **spectrum** would be achieved if the missing line, one of the expected weak signals, is isochronous with the peak at δ 143.30, thus contributing to its unique intensity. **Sym**metry considerations force us to conclude that addition occurs across bonds between fused six-membered rings. The coupled spectrum reveals that the peaks at δ 124.22 and **6** 130.76 correspond to carbons carrying the protons. The signal at δ 78.75 is assigned to the quaternary bridgehead **carbons** of the fullerene cage which are the sites of attachment of the benzyne moiety. The upfield value confirms that the structure is the closed, rather than the open $[10]$ annulene, isomer.¹⁵ Complete analysis of the connectivity via the INADEQUATE sequence is in progress.16

The monoadduct of C_{60} and benzyne is yellow in color; the UV/vis spectrum in n-hexane showed λ_{max} at 320 nm with a weak visible band at 428 nm. The FTIR spectrum (KBr pellet) showed C-H absorption bands at 2924 and 2854 cm-'. Additional frequencies were recorded at 1458, 1278, and 1024 cm^{-1} .

In one anomalous reaction of benzyne and buckminsterfullerene, we observed two AA'BB' spin systems in the aromatic region for the separated product that gave rise to a predominant ion *(m/z* 796) in the **mass** spectrometer. The major product showed eight major transitions at δ **7.627,7.620,7.616,7.609,7.480,7.473,7.468,** and 7.462. We are investigating the possibility that even the monoaddition of benzyne to C_{60} may be regiononspecific and subtly dependent on reaction conditions.

The isolated monoaddition product, corresponding to the downfield $AA'BB'$ spin system, crystallized from CS_2 **as** dark red spars (mp >400 "C). Structure analysis by X-ray diffraction is in progress.

Acknowledgment. We thank Stanley Dostal for his assistance. This work was supported by the National Science Foundation (CHE-9114265, CHE-87-21768, and DIR 8912612). S.H.H. thanks BASF for a contribution to a National Needs Fellowship. J.M. thanks Purdue University Department of Chemistry for a QUEST Fellowship. D.D. was supported by a postdoctoral fellowship from Michelin from where she was on leave.

Synthesis of the 9,lO-Acetonide of 9-Dihydro-FK-506l

Robert E. Ireland,* Thomas K. Highsmith, Laura D. Gegnas, and James L. Gleason

Department of Chemistry, McCormick Road, University of Virginia, Charlottesville, Virginia 22901

Received June 30,1992

Summary: The synthesis of the analog FKANAL (I) of the immunosuppressant FK-506 in which the central features are the spiroenone system B which masks the α -allyl aldol portion of FK-506 and the spiroketal D which mimics the α -keto amide portion is described.

In the course of work directed toward the total synthesis of the immunosuppressant FK-506,² it appeared that the spiroketal I (FKANAL³) might be a close, stable analog of the natural product itself. Many of the salient features that effect the binding⁴ of FK-506 to its receptor FKBP are preserved in this analog and the effector domain⁴ remains identical to that of the natural product. The synthesis of **this** material became the first target of this work

Figure 1. Parts for the synthesis of **FK-506 analog.**

and this goal has now been achieved.

The main features of the retrosynthetic plan for the analog I are the vinyl bromide A, the spiroenone B, and the spiroketal D (Figure 1). The aesemblage of **these parts**

⁽¹⁵⁾ Vogel, E. *Pure Appl. Chem.* **1982,54,1015. Diederich, F.; Ettl, R.; Rubin, Y.; Whetten, R. L.; Beck, R. D.; Alvarez, M. M.; Anz, S. J.; Sensharma, D.; Wudl, F.; Khemani, K. C.; Koch, A.** *Science* **1991**, 252, *548.*

⁽¹⁶⁾ Hawkins, J. M.; Loren, S.; Meyer, A.; Nunlist, R. *J. Am. Chem. Soc.* **1991,113,7770.**

⁽¹⁷⁾ Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. P. *J. Am. Chem. SOC.* **1985,107,3902.**

⁽¹⁸⁾ Sample preparation for 13C-NMR as shown to be useful for the higher fullerenes. See: Ettl, R.; Chao, I.; **Diederich, F.; Whetten, R. L.** *Nature* **1991,359,149.**

⁽¹⁾ No reprints of this article are available.

⁽²⁾ Tanaka, H.; Kuroda, A.; Marusawa, H.; Hatanaka, H.; Kino, T.; Goto, T.; Hashimoto, M.; Taga, T. J. Am. Chem. Soc. 1987, 109, 5031-5033. For previous syntheses, see: (a) Jones, T. K.; Mills, S. G.; Reamer, R. A.; Askin, Chem. Soc. 1989, 111, 1157-1159. (b) Nakatsuka, M.; Ragan, J. A.; Sammakia, T.; Smith, D. B.; Uehling, D. E.; Schreiber, S. L. J. Am. Chem. Soc. 1990, 112, 5583-5601. (c) Jones, T. K.; Reamer, R. A.; Desmond, R.; Mills, S.

⁽³⁾ FKANAL = FK(-506) ANAL(og).
(4) Bierer, B. E.; Somers, P. K.; Wandless, T. J.; Burakoff, S. J.; **Schreiber, S. L.** *Science* **1990,250,556-559.**